Sains Malaysiana 54(1)(2025): 59-75
http://doi.org/10.17576/jsm-2025-5401-06
Pembentukan Tanah Baki di
Malaysia melalui Faktor Kawalan Fizikal Batuan Induk
(The Formation of Residual Soil in Malaysia
from the Physical Control Factor of Parent Rocks)
AZLAN
SHAH NERWAN SHAH1,2 & NOR SHAHIDAH MOHD NAZER1,*
1Jabatan Sains Bumi dan Alam Sekitar, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi,
Selangor, Malaysia
2Kumpulan Teknologi Bahan, Bahagian Teknologi Industri, Agensi Nuklear Malaysia, 43000 Kajang,
Selangor, Malaysia
Received: 6 May
2024/Accepted: 3 October 2024
Abstrak
Batuan induk utama – igneus, sedimen dan metamorf menghasilkan variasi tanah baki in situ yang berbeza di Malaysia. Kajian ini membangunkan nilai fizikal terkini ke atas 38 sampel tanah baki berbeza batuan induk di seluruh Malaysia dengan pengkhususan diberikan ke atas nilai taburan saiz butiran (PSD), had Atterberg melalui penentuan had plastik (PL), had cecair (LL) dan indeks keplastikan (PI), graviti tentu (Gs), indeks tekstur luluhawa (Iw) dan cirian morfologi mikro mineral lempung. Hasil kajian mendapati terdapat variasi unjuran PSD dan darjah ketekalan tanah mengikut jenis tanah baki. Tanah baki igneus mempunyai kandungan pasir (Pr) kasar dan kerikil (Kl) yang tinggi dengan julat nilai 83.5%-93.31%. Peratusan lodak (Lk) dan lempung (Lg) adalah rendah ke sederhana, berjulat 6.69%-16.5% serta nilai Gs berjulat sekitar 2.35-2.56. Darjah keplastikan tanah baki igneus adalah rendah–sederhana dengan nilai PL sekitar 27.7%-40.53%, nilai LL berjulat 40.0%-53.93% dan nilai PI sekitar 8.34%-14.56%. Tanah baki metamorf mempunyai peratus butiran kasar yang tinggi dengan julat peratusan Pr + Kl antara 75.5%-95% dan peratus Lk + Lg yang rendah–sederhana berjulat antara 5%-24.5%. Julat Gs adalah antara 2.52-2.71. Nilai PL dan LL masing-masing berjulat antara 19.21%-36.48% dan 29.55%-61.83% dengan nilai PI sekitar 3.60%-25.35%. Tanah baki igneus dan metamorf memperlihatkan nilai Iw yang rendah berbanding tanah baki sedimen dengan kehadiran mineral lempung stabil seperti kaolinit dan haloisit serta peratus butiran kohesif yang rendah. Sampel tanah baki sedimen mempunyai peratus butiran kasar yang lebih rendah dengan julat Pr + Kl antara 54.07%-88% dan peratusan butiran halus Lk + Lg yang tinggi dengan julat antara 12%-45.93%. Julat Gs adalah antara 2.40-2.70. Tanah baki sedimen juga mempunyai darjah keplastikan yang tinggi dengan julat nilai PL dan LL masing-masing antara 21.58%-40.71% dan 38.95%-88.42% serta nilai PI sekitar 7.24%-51.61%. Tanah ini ditandai dengan kehadiran mineral lempung mengembang seperti montmorilonit dan vermikulit.
Kata kunci: Mineral lempung; sifat fizikal; taburan saiz butiran; tanah baki
Abstract
The main
parent rocks – igneous, sedimentary and metamorphic produce different in
situ residual soil variations in Malaysia. The study developed the latest
physical values obtained for 38 soil samples from different parent rock
throughout Malaysia, focusing on the particle size distribution (PSD) value,
Atterberg limits from the determination of plastic limit (PL), liquid limit
(LL) and plasticity index (PI), specific gravity (Gs), weathering
textural index (Iw), and
micro-morphological properties of clay minerals. The results found varying PSD
projections and degree of soil consistency show depending on residual soils
type. The residual igneous soil has a high content of coarse sand (Pr) and gravel (Kl) ranging from
83.5%-93.31%. The percentage of silt (Lk) and clay (Lg) is low-medium, ranging from 6.69%-16.5% and
the Gs values ranged between 2.35-2.56. The degree of plasticity of
the igneous residual soil is low to moderate, with PL and LL values ranging
between 27.7%-40.53% and 40.0%-53.93%, respectively, and PI values around
8.34%-14.56%. Metamorphic residual soil has a higher coarse grains percentage
with a Pr + Kl percentage
ranging between 75.5%-95% and low-medium range of Lk + Lg ranging between 5%-24.5%. The Gs ranges between 2.52-2.71. The PL and LL values each ranging between
19.21%-36.48% and 29.55%-61.83%, respectively, with the PI values between
3.60%-25.35%. Igneous and metamorphic residual soils show a lower Iw values compared to sedimentary
residual soils, with the presence of stable clay minerals like kaolinite and
halloysite and lower percentage of cohesive particles. The sedimentary residual
soils sample has a lower coarse grains percentage with Pr + Kl ranges between 54.07%-88% and a higher finer grains Lk + Lg percentage with a range between 12%-
45.93%. The Gs ranges between 2.40-2.70. Sedimentary residual soils
also show a high degree of plasticity, with a range of PL and LL values between
21.58%-40.71% and 38.95%-88.42%, respectively, and PI values between
7.24%-51.61%. This soil is marked by the presence of expanding clay minerals
like montmorillonite and vermiculite.
Keywords: Clay
minerals; particle size distribution; physical properties; residual soil
REFERENCES
Abdullah, H., Rashidi, N.R.A. & Ariffin, M.Z. 2023. Relationship between shear strength and
suction of granitic residual soil. Malaysian Journal of Science and Advanced
Technology 2: 75-79.
Aitchison, J.C. 1994. Early Cretaceous
(pre-Albian) Radiolarians from Blocks in Ayer Complex Melange, Eastern Sabah,
Malaysia, with comments on their regional tectonic significance and the origins
of enveloping Melanges. Journal of Southeast Asian Earth Sciences 9(3):
255-262.
Allagu, B. 1996. Sedimentologi dan stratigrafi batuan sedimen Miosen di Lembangan Malibau, Sabah. Bulletin
of the Geological Society of Malaysia 40: 177-195.
Aloni, C. & Alexander, C.B. 2020.
Environmental impact of weathering and soil formation in geomorphological
research. World Journal of Advanced Research and Reviews 8(3): 047-051.
Anggraini, V., Isdaryanto,
I., Illiayas, M.I.M. & Stephanie, E. 2022.
Short-time effects on compressive strength of residual soils due to rainwater. Journal
of Material Science and Technology Research 9: 87-96.
Araujo, M.A., Zinn, Y.L. & Lal, R.
2017. Soil parent material, texture and oxide contents have little effect on
soil organic carbon retention in tropical highlands. Geoderma 300: 1-10.
ASTM D7928 -17. 2017. Standard Test
Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using
the Sedimentation (Hydrometer) Analysis. West Conshohocken, PA: ASTM
International.
ASTM D4318-17e1. 2017. Standard Test
Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils.
West Conshohocken, PA: ASTM International.
ASTM D6913/D6913M-17. 2017. Standard
Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve
Analysis. West Conshohocken, PA: ASTM International.
ASTM D854-14. 2014. Standard Test
Methods for Specific Gravity of Soil Solids by Water Pycnometer. West
Conshohocken, PA: ASTM International.
ASTM D2487. 2006. Standard Practice for
Classification of Soils for Engineering Purposes. West Conshohocken, PA:
ASTM International.
Aydin, A. 2006. Stability of Saprolitic slopes: Nature and role of field scale
Heterogeneities. Natural Hazards and Earth System Sciences 6: 89-96.
Azlan, N.N.N., Simon, N., Hussin,
A., Roslee, R. & Ern, L.K. 2017. Pencirian sifat kimia bahan tanah pada cerun gagal di sepanjang jalan Ranau-Tambunan, Sabah, Malaysia. Sains Malaysiana 46(6): 867-877.
Bakhshipour, Z., Asadi, A., Huat, B.B.K., Sridharan, A. & Kawasaki, S. 2016. Effect
of acid rain on geotechnical properties of residual soils. Soils and
Foundations 56(6): 1008-1020.
Batumalai, P., Mohd Nazer, N.S., Simon, N., Sulaiman,
N., Umor, M.R. & Ghazali, M.A. 2023. Soil
detachment rate of a rainfall-induced landslide soil. Water 15(12): 2149.
Beemer, R.D., Bandini-Maeder,
A., Shaw, J. & Cassidy, M.J. 2020. Volumetric particle size distribution
and variable granular density soils. Geotechnical Testing Journal 43(2):
517-533.
Bland, W. & Rolls, D. 1998. Weathering.
London: Arnold.
Blight, G.E. 2012. Origin and formation of
residual soils. Dlm. Mechanics of Residual Soils. Edisi ke-2, disunting oleh
Blight, G.E. & Leong, E.C. London: CRC Press.
Bowles, J.E. 2012. Engineering
Properties of Soils and their Measurement. Delhi: McGraw Hill New Education.
Catoni, M., D’Amico, M.E., Zanini,
E. & Bonifacio, E. 2016. Effect of pedogenic processes and formation factors on organic matter stabilization in alpine
forest soils. Geoderma 263: 151-160.
Cesarano, M., Bish, D.L.,
Cappelletti, P., Cavalcante, F., Belviso, C. &
Fiore, S. 2018. Quantitative mineralogy of clay-rich siliciclastic landslide
terrain of the Sorrento Peninsula, Italy, using a combined XRPD and XRF
approach. Clays and Clay Minerals 66(4): 353-369.
Chen, B., Mustafa, K.S. & Khoo, T.T.
2002. Dating the Kenny Hill Formation: Spores to the fore. Warta Geologi 28(5): 189-191.
Chen, J., Li, F., Zhao, X., Wang, Y.,
Zhang, L., Feng, L., Liu, X., Yan, L. & Yu, L. 2023. The weathering process
of carbonatite: Weathering time. PeerJ 11:
e15793.
Clennell, M.B. 1992. The Melanges of Sabah,
Malaysia. Tesis Dr. Fal., University of London.
Duarte, I.M.R.
& Rodrigues, C.M.G. 2018. Residual soils. Dlm. Encyclopedia of
Engineering Geology, disunting oleh Bobrowsky, P.T. & Marker, B. Cham: Springer.
Erfen, H.F.W.S., Gansau,
A.G. & Henry, W.A. 2016. Engineering properties of soil from unstable
slopes in Ranau-Kundasang, Sabah, Malaysia. Transactions
on Science and Technology 3(3): 495-500.
Erfen, H.F.W.S., Musta,
B., Gabda, D. & Asis,
J. 2020. Correlation between physico-chemical
properties and engineering properties of soil samples from Pinousuk gravel deposit of Mesilou, Kundasang,
Sabah. ASM Science Journal 13: 1-7.
Faisal, H.A. 2000. Unsaturated tropical
residual soils and rainfall induced slope failures in Malaysia. Dlm. Unsaturated Soils for Asia, disunting oleh Raharjdo, H. London: CRC Press.
Fernandes, A.M.,
Conceição, F.T., Spatti Junior, E.P., Sardinha, D.S. & Mortatti, J.
2016. Chemical weathering rates and
atmospheric/soil CO2 consumption of igneous and metamorphic rocks
under tropical climate in Southeastern Brazil. Chemical Geology 443: 54-66.
Garzón, E., Sánchez-Soto,
P.J. & Romero, E. 2010. Physical
and geotechnical properties of clay phyllites. Applied Clay Science 48(3): 307-318.
Gray, J.M., Bishop, T.F.A. & Wilson, B.R.
2015. Factors controlling soil organic carbon stocks with depth in Eastern
Australia. Soil Science Society of America Journal 79(6): 1741-1751.
Hillel, D. 2008. Soil physical attributes. Soil
in the Environment. Massachusetts: Academic Press. hlm.
55-77.
Ho, L.T. 1995. Some engineering geology
characteristics of the Kenny Hill Formation, Kuala Lumpur. Warta Geologi 21(1): 9-11.
Hoe, T.G. & Yuan, T.H. 2010. Iron
Mineralisation, South Gunung Jerai,
Kedah, Implications of Genesis. Warta Geologi 36(2): 112.
Huat, B., Ali, F. & Choong, F. 2006. Effect
of loading rate on the volume change behavior of
unsaturated residual soil. Geotechnical and Geological Engineering 24(6):
1527-1544.
Huat, B.B.K., Toll, D.G. & Prasad, A.
2012. Handbook of Tropical Residual
Soils Engineering. Boca Raton: CRC
Press.
Ishak, M.F., Zolkepli,
M.F. & Affendy, M. 2017. Tropical residual soil
properties on slopes. International Journal of Engineering Technology and
Sciences 8(1): 1-9.
Jabatan Mineral dan Geosains.
1985. Peta Geologi Semenanjung Malaysia. Cetakan ke-8. Malaysia: Kementerian Sumber Asli dan Alam Sekitar.
Jabatan Pertanian Sarawak
(DOA). 2002. Agricultural Statistics of Sarawak. Sarawak, Malaysia: DOA.
Jasin, B. & Harun, Z. 2011. Lower
Carboniferous (Tournaisian) radiolarians from
Peninsular Malaysia and their significance. Bulletin of the Geological
Society of Malaysia 57: 47-54.
Júnior, E.P.S., da Conceição,
F.T., Fernandes, A.M., Sardinha, D.d.S., Menegário, A.A. & Moruzzi,
R.B. 2019. Chemical weathering rates of clastic sedimentary rocks from the
Paraná Basin in the Paulista Peripheral Depression,
Brazil. Journal of South American Earth Sciences 96: 102369.
Kaliakin, V.N. 2017. Example problems related to
soil identification and classification. Soil Mechanics. United Kingdom:
Butterworth-Heinemann. hlm. 51-92.
Khalid, N., Mukri,
M. & Arshad, M.F. 2019. Geotechnical properties of Salak Tinggi residual soil-bentonite mixture as liner. Journal of Mechanical
Engineering 16(3): 79-90.
Kirk, H.J.C. 1962. The geology and mineral
resources of Semporna Peninsular, North Borneo. British Borneo Geology
Survey Memoir. hlm. 14.
Kumari, N. & Mohan, C. 2021. Basics of
clay minerals and their characteristic properties. Dlm. Clay and Clay Minerals, disunting oleh
Nascimento, G.M.D. London: IntechOpen.
Latib, F.W.M., Kasa,
A. & Bachok, M.F. 2023. Geotechnical properties
on residual soil of sedimentary rock. Journal of Advanced Research in
Applied Sciences and Engineering Technology 30(3): 182-191.
Liew, T.C. & Page, R.W. 1985. U-Pb
zircon dating of granitoid plutons from the west coast province of Peninsular
Malaysia. Journal of Geological Society of London 142: 515-526.
Marto, A. & Yusoff,
S.Y.M. 2017. Major soil type, soil classification, and soil maps. Dlm. Soils of Malaysia, disunting oleh Ashraf, M.A., Othman, R. & Ishak, C.F. Boca Raton: CRC Press.
Mohamed, A., Rahman, A.H.A. & Ismail,
M.S. 2015. Sedimentary facies of the west crocker formation North Kota Kinabalu-Tuaran Area, Sabah,
Malaysia. Journal of Physics: Conference Series 660: 012004.
Muda, J. & Tongkul,
F. 2008. Geoheritage resources of the Baliajong River: Potential for geotourism development. Bulletin of the Geological Society of Malaysia 54: 139-145.
Musta, B., Erfen,
H.F.S. & Tahir, S. 2008. Geochemical characterization of volcanic soils
from Tawau, Sabah. Bulletin of the Geological Society of Malaysia 54:
33-36.
Musta, B., Asat, M.A.,
Ling, S.Y. & Saleh, H. 2022. Geophysical investigation and geochemical
study of sediment along the coastal area in Kota Belud Sabah, Malaysia. Journal of Physics: Conference Series 2165: 012046.
Musta, B., Erfen,
H.F.W.S., Karim, A.S.R., Kim, K.W. & Kim, J.H. 2019. Physico-chemical
properties and mineralogical identification of soils from Mélange in Beluran-Sandakan, Sabah, Malaysia. Journal of Physics:
Conference Series 1358: 012073.
Nazer, N.S.M., Shahin, A.M.K., Shah, A.S.N.,
Lai, G.T., Umor, M.R. & Ghazali, M.A. 2023. The
prediction of landslide slip surface based on the correlation between relative
density and dynamic cone penetration test. Sains Malaysiana 52(9): 2645-2655.
Niu, X. 2019. Weathered granite soils. Dlm. Geotechnical Engineering - Advances in Soil
Mechanics and Foundation Engineering, edited by Hemeda,
S. & Ülker, M.B.C. London: IntechOpen.
Paniagua, P., Ando, E,
Silva, M., Emdal, A., Nordal, S. & Viggiani, G. 2013. Soil deformation
around a penetrating cone in silt. Ge´otechnique Letters 3: 185-191.
Peng, L.C., Leman, M.S.,
Hassan, K., Nasib, B.M. & Karim, R. 2004. Stratigraphic Lexicon of Malaysia. Kuala Lumpur: Geological Society of
Malaysia.
Prakash, S. & Jain, P.K. 2002. Engineering
Soil Testing. Roorkee: Nem Chand & Bros.
Rahardjo, H., Satyanaga,
A., Leong, E.C., Ng, Y.S. & Pang, H.T.C. 2012. Variability of residual soil
properties. Engineering Geology 141-142: 124-140.
Rahim, I.A. & Musta,
B. 2018. The stability of metasedimentary rock in Ranau,
Sabah, Malaysia. Indonesian Journal on Geoscience 5(1): 23-31.
Rahman, Z.A. 1999. Structural pattern of
the Crocker formation in southern part of Beaufort Area, Sabah. Borneo
Science 6: 11-20.
Raj, J.K. 2023. physical characterization
of the weathering profile over a sheared, biotite-muscovite granite in
Peninsular Malaysia. Warta Geologi 75: 25-36.
Raj, J.K. 2018. Physical characterization
of a deep weathering profile over rhyolite in humid tropical Peninsular
Malaysia. Geotechnical & Geological Engineering 36: 3793-3809.
Roslee, R., Piraha,
J.A., Madria, A.N. & Zikiria,
M.F. 2020. Applicability of the Geological Strength Index (GSI) classification
for the Trusmadi Formation at Sabah, Malaysia. Earth
Sciences Malaysia 4(1): 77-81.
Roy, S. & Bhalla, S.K. 2017. Role of
geotechnical properties of soil on civil engineering structures. Resources
and Environment 7(4): 103-109.
Saffari, P., Nie, W., Md
Noor, M.J., Zhang, X. & Liang, Q. 2019. Characterization the geotechnical
properties of a Malaysian granitic residual soil grade V. IOP Conference
Series: Earth and Environmental Science 289: 012006.
Shah, A.S.N., Nazer,
N.S.M. & Harris, M.I. 2022. Morfologi hakisan dan sifat serakan lempung Kaolinit dan Montmorilonit di kawasan tropika. Sains Malaysiana 51(12):
3879-3896.
Sun, M., Yu, J., Wu, X., Ding, Y., Fu, T.,
Yang, Y. & Jiang, J. 2021. Mechanical behavior of
weathered granite exposed to water. Applied Sciences 11: 10356.
Sung, C.T.B., Ishak, C.F., Abdullah, R.,
Othman, R., Panhwar, Q.A. & Aziz, M.M.A. 2017.
Soil properties (physical, chemical, biological, mechanical). Dlm. Soils of Malaysia, disunting oleh Ashraf, M.A., Othman, R. & Ishak, C.F. Boca Raton: CRC Press.
Swart, D., Dippenaar,
M.A. & Roo, J.L.V. 2023. Field tests for the identification
of silts. Bulletin of Engineering Geology and the Environment 82:
425.
Tahir, S., Siong,
K.V., Musta, B. & Asis,
J. 2017. Facies and sandstone characteristics of the Kudat Formation, Sabah, Malaysia. Geological Behavior 1(2): 20-25.
Tan, B.K. 2004. Country case study:
Engineering geology of tropical residual soils in Malaysia. Dlm. Tropical Residual Soils Engineering, disunting oleh Huat, B.B.K., Gue,
S.S. & Faisal Hj. Ali. London: CRC Press.
Tan, T., Huat,
B.B.K., Anggraini, V. & Shukla, S.K. 2019.
Improving the engineering behaviour of residual soil with fly ash and treated
natural fibres in alkaline condition. International Journal of Geotechnical
Engineering 15(3): 313-326.
Thomas, P. 1966. Soil Map of Sabah, East
Malaysia. Tuaran, Sabah: Pusat Penyelidikan Pertanian.
Tjia, H.D. 1988. Accretion tectonics in Sabah:
Kinabalu Suture and East Sabah accreted terrane. Bulletin of the Geological
Society of Malaysia 22: 237-251.
Tongkul, F. 2006. The structural style of lower miocene sedimentary rocks, Kudat Peninsula, Sabah. Bulletin of the Geological Society of Malaysia 49:
119-124.
Ural, N. 2018. The importance of clay in
geotechnical engineering. Dlm. Mineralogy, disunting oleh Zoveidavianpoor,
M. London: IntechOpen.
Valášková, M. & Martynková,
G.S. 2012. Vermiculite: Structural properties and examples of the use. Dlm. Clay Minerals in Nature - Their Characterization,
Modification and Application, disunting oleh Valášková, M. & Martynková,
G.S. London: IntechOpen.
Wan Zuhairi, W.Y.
& Nurita, R. 2019. Assessment of heavy metal
attenuation and mobility in compacted soil columns. Sains Malaysiana 48(11): 2463-2472.
Wilson, M.J. 2020. Dissolution and
formation of quartz in soil environments: A review. Soil Science Annual 71(2): 99-110.
Yong, L.L., Emmanuel, E., Purwani, R. & Anggraini, V.
2019. Geotechnical assessment of Malaysian residual soils for utilization as
clay liners in engineered landfills. International Journal of GEOMATE 16(58): 20-25.
Yusof, Z.M., Al-Adhami,
A.M.Y. & Matore, M.E.E.M. 2022. Compressive
strength of stabilised granitic residual soil using mixture of pineapple
fibre-hydrated lime. Sustainability 14(7): 3826.
Zarime, N. & Yaacob,
W.Z.W. 2019. Leaching behavior of cadmium through
compacted granitic residual soil using column infiltration test. E3S Web of
Conferences 101: 04002.
*Corresponding author; email:
shahidahnazer@ukm.edu.my